Int. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 31, No. 12, pp. 2571-2578, 1988

0017-9310/88 $3.00+0.00
© 1988 Pergamon Press plc

Generalized solution and effectiveness for
concentric tube heat exchangers

R. C. PRASAD

Department of Mechanical Engineering, University of New Brunswick,
Saint John, New Brunswick, Canada E2L 4L5

(Received 2 December 1987 and in final form 9 May 1988)

Abstract—In this paper, general solutions are obtained for the steady-state temperature of heat exchanging
fluids along the length of a concentric tube heat exchanger. Heat exchanger effectiveness is also obtained
in terms of the dimensionless exit temperature. Governing equations in non-dimensional differential form
for the inner and outer fluid streams representing non-adiabatic conditions at the outside surface of the
outer tube are solved analytically. Both counter-flow and parallel-flow cases are considered. Expressions
for heat transfer to or from the outside are obtained. Exact agreement with the NTU method for adiabatic
conditions at the outside surface and also the heat balance analysis provide validation of the generalized
solution.

INTRODUCTION

THIS PAPER presents a theoretical analysis of a
concentric tube heat exchanger under steady-state con-
ditions. A general case where the non-adiabatic con-
dition at the outside surface of the outer pipe exists,
is considered. In this case, the fluid in the annular
space exchanges heat with the fluid in the inner pipe
as well as outside. The analysis allows the prediction
of the temperatures of the fluid streams along the
length of such heat exchangers where the commonly
used LMTD method [1] and/or NTU method [2] do
not apply. Governing equations in dimensionless
form are derived for the fluid streams and are solved
analytically. The inlet temperatures of the fluid
streams provide the required boundary conditions.
An expression for the amount of heat transferred
across the non-adiabatic outside surface is also de-
veloped. The counter-flow as well as the parallel-flow
type of concentric tube heat exchanger is analysed.
Using the present solution, the effect of various
dimensionless parameters on the performance of a
concentric tube heat exchanger is shown. These
solutions, for adiabatic conditions at the outside
surface, are compared with the NTU method [2].

THEORETICAL ANALYSIS

General solutions for a concentric tube heat ex-
changer, counter-flow (Fig. 1(a)) and parallel-flow
(Fig. 1(b)), are obtained by analytically solving the
governing differential equations. These equations are
derived with the following assumptions :

(1) mass flow rates m, and m, of the heat exchang-
ing fluids are constant ;
(2) inlet fluid temperatures T;; and T); are constant ;

(3) temperature of the outside environment (7,) is
constant ;

(4) fluid properties are constant;

(5) the overall heat transfer coefficients remain
constant;

(6) T, and T, represent average fluid temperatures
at any section of the inner and annular fluid streams,
respectively.

Mathematical model—counter-flow heat exchanger
Energy balance over a differential element of the

inner and annular fluid in a counter-flow heat ex-

changer results in the following differential equations :

inner pipe
dT
me, o+ Ui(T=Th) = 0; (M
1
annulus

dr da,
m2€2@:+ Ul(Tz—Tl)-f'Uo(Tz—To)a:O;

2

boundary conditions
ata,=A4,, T\(4)=T (3a)
ata, =0, T,(0) = T (3b)

where da, and da, represent the differential surface
areas for the inner and outer pipe, respectively.

These governing equations are transformed into the
following dimensionless form :

inner pipe

6,—NO,+ N8, = 0; 4
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NOMENCLATURE
a,,a, surface area of pipe at any section [m*]  Greek symbols
A,, A, total surface area of the pipe [m?] B defined by equations (8c) and (26¢)
A dimensionless surface area of the inner ¥ defined by equations (8b) and (26b)
pipe at any section, a,/4,,0 < A< 1 £ heat exchanger effectiveness
¢ specific heat of fluid [Tkg™'K™] 0 dimensionless temperature defined by
C heat capacity ratio, m ¢, /(myc,) equation (7a)
[dimensionless] i} first derivative of 6(A4) with respect to
D diameter of pipe [m] A = d6/d4
E,F constants 0 second derivative of 6(4) with respect
K dimensionless parameter, to 4 = d*6/dA*>
Uya,/(Ua,) = UA,/(U,Ay) Ay, 4, defined by equations (9b) and (27b).
L length of pipe [m]
m mass flow rate [kgs™', kgmin~']
N modified number of transfer units based  Subscripts
on inner flow, U,4,/(mc,) 0 outside or outer pipe
[dimensionless] 1 inner pipe or fluid in the inner
NTU number of transfer units as defined in pipe
NTU method, U, 4,/(m€)nin fluid in the annular space
[dimensionless}) e exit
o heat flow rate [W] i inlet
T temperature [K, °C] max maximum
U overall heat transfer coefficient min  minimum
Wm2K']. ntu  NTU method.
T T Uo To T Uo
T2 1 + e T % | il T2e
™ (T2 mp—> | ™ T my—> | T
T Ty, T Tuy KN
I -— |T1| - My e— — |T1 | — T Dy D,
le — T T - v
[ 1| __L
L day(inner) l___i T'___ da,(lnner) '
I‘_do (outer) ' da louter)
Q]:O =]} O1=A| o,-O a = A|
Q=0 Ao a=A, a0 =0 oo ao= Ao
(a) (b)
Fi1G. 1. Schematic diagram of a concentric tube heat exchanger : (a) counter-flow ; (b) parallel-flow.
annulus number of transfer unit (inner fluid),
6,+(1+K)NCH,—NCO, = KNC8, ; (5) N=U4,/(mc,) (7d)
boundary conditions ratio of overall thermal resistances across the walls
atd=1, 6,(4)=6,=0 (6a) K="U,a,/(U,a\) = U,A, /(U 4,).  (Te)
atd=0, 0,(4)=0,=1 (6b) By combining equations (4) and (5) and eliminating

where the following definitions for the dimensionless
terms are used :

dimensionless temperature,

6, = ;21 TT‘l“ n=0,1,2 (7a)
dimensionless area (inner pipe),
A=aj4,, 041 (7b)
ratio of heat capacity rate,
C = (mc,)/(myc,) (70)

the dimensionless temperature 6,(4), the following
equation in #,(a) is obtained :

9.1 +791 + B0, = po, (8a)
where .
y=N[(1+K)C-1] (8b)
and
B = —KCN* (8¢c)

Analytical solution (C # 1 if K = 0)
The analytical solution for 6,(4) from equation
(8a) is given by
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0,(A) = Eexp(4,4)+ Fexp (A,4)+86,

where

(92)

A1, Ay = 05[—y+ (> —4B)'7]. (9b)

The solution for 6,(A4) is obtained by substituting
6,(A4) and its first derivative §,(4) from equation (9a)
into equation (4) and is expressed as

0:(4) = E(1—4,/N) exp (1, 4)
+F(1—1;/N)exp (1,4)+6,. (10)

Using the boundary conditions from equations (6),
the constants E and F are obtained as

_ Nexp () =0, [Nexp (i) =D 4221,
T (N—=4)exp(d,)—(N—4,)exp (4,)
Nexp (L) —0,[N(exp (4,)—1)+1,]
(N=2)exp(4)—(N—Az)exp(4,)
(12)

E

F=(-1)

Heat transferred to the environment

The amount of heat transferred to the environment
through the non-adiabatic outside surface of the outer
pipe is given by the following integral equation :

AO
Qo =J Uo(TZ_To)dAo'

0

(13a)

Combining equations (7a)—(7c) and (10) into equa-
tion (13a) and integrating yields

Qo = U, A (T — T, ){E(1— 4 /N)[exp (4,) —1)/4,
+F(1—4,/N)[exp (1) —1]/2;}, U, #0. (13b)

Analytical solution (C = 1 and K = 0)

The above general solution for a concentric tube
counter-flow heat exchanger applies to all values of C
and K with the exception of C =1 and K = 0. The
following solutions are presented for this special case.
Under these conditions, equation (8a) transforms into

0, =0. 14
Therefore
8, =E (15)
and
0,(a) = EA+F. (16)

Substitution of equations (15) and (16) into equation
(4), yields the following solution for 8,(A):
0,(4) = E(4—1/N)+F. 17

By applying the boundary conditions in equation (6),
the constants £ and F are determined as

E=—N/(1+N); ifC=1landK=0
F=N/(1+N); ifC=1andK=0.

(18)
(19)

The amount of heat transferred (Q,) to the environ-
ment, in this case, is zero because K = 0 represents an
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adiabatic condition (U, = 0) at the outside surface of
the outer pipe.

Mathematical model—parallel-flow heat exchanger

A similar theoretical analysis as above for a parallel-
flow heat exchanger with non-adiabatic conditions at
the outside surface of the outer pipe, results in the
following differential equations:

inner pipe
dT
—miei ==+ Uy(T,—T)) =0;  (20)
da,

annulus

ar da,
macy gyt + UTa=T)+Uo(T3=T,) g * = 0
1

@1

boundary conditions
ata, =0, T,(0) =T, (22a)
ata, =0, T,(0)=Ty. (22b)

Using the dimensionless terms defined in equations
(7), the above differential equations are transformed
into the following dimensionless form :

inner pipe
,+NO,—Nb,=0; (23)
annulus
0,+(1+K)NCO,—NCO, = KNC8,; (24
boundary conditions
A=0, 6,(4)=0,=0 (25a)
A=0, 0,(4)=06;=1 (25b)

Combining equations (23) and (24) and eliminating
the dimensionless temperature 8,, the following equa-
tion in @, is obtained :

0,+y0,+p0, = po, (26a)
where
y=N[(1+K)C+1] (26b)
and
B = KCN>. (26¢)
Analytical solution

The analytical solution for 0,(4) from equation
(26) is given by

0,(4) = Eexp (4, 4)+ Fexp (1,4)+6, (27a)
where
Avs Ay = 0.5[—y+ (3> —4p)'?] (270)

and F and F are constants. Substitution of ,(4) from
equation (27) and its derivative into equation (23)
yields the following solution for 6,(4):
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6,(4) = E(1+4,/N)exp(4,4)
+F(141,/N)exp (A,4)+8,. (28)

The constants E and F are determined by applying
the boundary conditions from equations (25) to equa-
tions (27) and (28), and found to be

N+1,0 N+24,8,
_OHA pl ZHED o)
A=A, A=A,
Heat transferred to the outside
The heat transferred through the outer surface of
the outer pipe is given by

A

Q, = f "UL(T,—T,)dA,. (30a)

Substitution of equations (7a)-(7¢) and (28) into
equation (30a) and integration yields the following
expression :

Qo = Uy Ao(Ty~Ty){EQ+ A, /N)[exp (4,) —1]/1,
+F(144,/N)[exp (4,)—1)/4,}, U, #0. (30b)

RESULTS

Solutions for the dimensionless temperatures 6, and
6, of the fluids as a function of the dimensionless area
A (0 < 4 < 1) are presented for counter-flow as well
as parallel-flow heat exchangers in this section. Fig-
ures 2 and 3 show the variation of #, and 8, as a
function of 4 (0 <4< 1) for N=2, C=0.5 and
0, = 0.5 for non-adiabatic conditions (K = 0.5, 1.0
and 2.0) as well as the adiabatic condition (K = 0) at
the outside surface. Significant variation in the per-
formance of a double-pipe heat exchanger is observed
due to non-adiabatic conditions. The influence of the
outside temperature 6, on 8, and 0, for C = 0.5,
N =2, K=0.5is shown in Figs. 4 and 5 and com-
pared with those for adiabatic conditions (K = 0).
Figures 6 and 7 present the results for 6, and 8, for
N =2, 0,=0.5 and show the influence of variation
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F1G. 2. Variation of 8, and 8, along the length of a counter-
flow heat exchanger for K =0, 0.5, 1.0, 2.0.
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FiG. 3. Variation of 0, and 6, along the length of a parallel-
flow heat exchanger for K = 0, 0.5, 1.0, 2.0.
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F1G. 4. Variation of 8, and 0, along the length of a counter-
flow heat exchanger for 8, = 0, 0.5, 1.0.
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F1G. 5. Variation of 8, and 8, along the length of a parallel-
flow heat exchanger for 6, = 0, 0.5, 1.0.

in the heat capacity ratio C. Results for adiabatic
(K = 0) as well as non-adiabatic conditions (K = 0.5)
are also shown in Figs. 6 and 7. The dimensionless
temperatures 6,. and 8,. of the fluids at the exit of a



Generalized solution and effectiveness for concentric tube heat exchangers
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FI1G. 6. Variation of 8, and 8, along the length of a counter-
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flow heat exchanger for C = 0, 0.5, 1.0.
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Fi1G. 7. Variation of ; and 6, along the length of a parallel-

flow heat exchanger for C = 0, 0.5, 1.0.

double-pipe heat exchanger are shown in Fig. 8 for
counter-flow and Fig. 9 for parallel-flow as a function
of N for C =0.5 and 6, = 0.5. Results for adiabatic
(K = 0) and non-adiabatic (K = 0.5, 1.0, 2.0) con-

ditions are shown and compared (Figs. 8 and 9).

HEAT

EXCHANGER EFFECTIVENESS AND

COMPARISON WITH NTU METHOD

The results of the present analysis permit deter-
mination of the heat exchanger effectiveness and are
compared with the NTU method [1]. The heat ex-
changer effectiveness, ¢, as defined in the NTU
method [1] for m,c, > m,c, and m ¢, < m,c, is used
for its determination in general and comparison
with the NTU method for adiabatic conditions (X =

0) at the outside surface of the heat exchanger.

For mc, < myc, (C < 1), ¢ for parallel-flow as well

HMT 31:12-L
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FiG. 8. Plot of 8 ~N for a counter-flow heat exchanger for

K=0,05,1.0,2.0.
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FiG. 9. Plot of 8.~N for a parallel-flow heat exchanger for

K=0,05,1.0,2.0.

as counter-flow is defined as

which,

Tlc - Tli (3 1)

&= = &
T2i - Tli

with equation (7a) reduces to
& = b1 = £,,(Cp, NTU) (32a)
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Table 1. Comparison of heat exchanger effectiveness for
counter-flow heat exchanger

R. C. PrasaD

Table 2. Comparison of heat exchanger effectiveness for
parallel-flow heat exchanger

Present method Present method
C with K =0 NTU method C with K =0 NTU method

C<l N ¢=6, Cun=C NIU=N ¢, C<l N &e=6., Co.=C NIU=N &,
0.5 0.5 0.362 0.5 0.5 0362 05 0.5 0.352 0.5 0.5 0.352
1.0 0.565 1.0 0.565 1.0 0.518 1.0 0.518
2.0 0.775 2.0 0.775 2.0 0.633 2.0 0.633
3.0 0.847 3.0 0.847 3.0 0.659 3.0 0.659
4.0 0.927 4.0 0.927 4.0 0.665 4.0 0.665
5.0 0.957 5.0 0.957 5.0 0.666 5.0 0.666

_ £=0, C.=C NIU=N 3 £ =0, Cu=C NITU=N

C=1 N _1%6, Co=1Cc NTU=NCc ' C=1 N o _1Z¢, Co=1/C NTU=NC °m
1.0 0.5 0.333 1.0 0.5 0.333 1.0 0.5 0.316 1.0 0.5 0.316
1.0 0.500 1.0 0.500 1.0 0.432 1.0 0.432
2.0 0.667 20 0.667 2.0 0.491 2.0 0.491
3.0 0.750 3.0 0.750 3.0 0.499 3.0 0.499
4.0 0.800 4.0 0.800 4.0 0.500 4.0 0.500
5.0 0.833 5.0 0.833 5.0 0.500 5.0 0.500

C>1 N e=1-6, Cun=1C NTU=NC &, C>1 N e=1-0, Cn=1/C NTU=NC &,
2.0 0.5 0.565 0.5 1.0 0.565 2.0 0.5 0.518 0.5 1.0 0.518
1.0 0.775 2.0 0.775 1.0 0.633 2.0 0.633
2.0 0.927 4.0 0.927 2.0 0.665 4.0 0.665
3.0 0.974 6.0 0.974 3.0 0.667 6.0 0.667
4.0 0.991 8.0 0.991 4.0 0.667 8.0 0.667
5.0 0.997 10.0 0.997 5.0 0.667 10.0 0.667
where tabulated. For C = 0.5 (C < 1), equations (32) are
) applicable and &N are found to be in exact agreement
= (7€) min =C (32b) Wwith &,,~NTU obtained by the NTU method [1] for
(M) max counter-flow (Table 1, Fig. 8) as well as parallel-flow
and (Table 2, Fig. 9). For C = 1, equations (32) and (34)
both are applicable. As shown in Tables 1 and 2,

U4, | - . . .
NTU = =N. (32¢) Tesu ts obtained with the present method are identical
m¢,

For mc, = myc, (C 2 1), ¢ for parallel-flow as well
as counter-flow is defined as

_ TZi_TZc T2=—T11
&= T2i - Tli h 1 TZi_ Tll h 8""“ (33)
which, together with equation (7a) reduces to
&= 1 _92e = sntu(cnm’ NTU) (343)
where
_ (mc)min _ 1
ntu (mc)max - C (34b)
and
U4
NTU = =1 = NC. (34c)
myc,

Heat exchanger effectiveness, ¢, calculated with the
present method for various values of C and N for
counter-flow as well as parallel-flow are listed in
Tables 1 and 2, respectively. The corresponding values
of C,., NTU and heat exchanger effectiveness, ¢,,,,
determined by the NTU method [1] are also

to those obtained by the NTU method. For C =2
(C > 1), equations (34) are used to determine the
effectiveness ¢, NTU and C,,,. The effectiveness, ¢,
obtained by the NTU method is in exact agreement
(Tables 1 and 2).

HEAT BALANCE

Expressions for Q,, heat transferred through the
outside surface of the heat exchanger, are provided in
equations (13b) and (30b). The heat gain Q, and
Q, by the fluid in the inner pipe and the annulus,
respectively, can be estimated with the following
equations :

Q,=mc(T\.—Ty) (35a)
0> =mycy(Toe— Tx)- (35b)

The algebraic sum of Q,, @, and Q,
0o +0,+0Q; =0 (36)

would provide further validation of the present
analysis.
A case study is presented here for the parameter
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Table 3. Parameter values for case study
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Table 4. Heat balance calculation—case study

For inner tube For annulus

mye, = 10000 min™'°C™"  myc; = 20000 I min™'°C""!

T, = 10.0°C T, = 100.0°C
U, =250Wm~2°C"! U,=10.0Wm™2°C™!
L=20m L=20m
D, =0.05m D,=0.1m
A, =0.1xm? A, = 0.2zm’
100 o
o el 0 T~
TS
60 - — _—_ ADIABATIC, K=0
y o NON-ADIABATIC, k=08

1=20°C

C

Aza /A

FiG. 10. Plot of T, and 7, along the length of a counter-flow
heat exchanger.

we

TC

ADIABATIC, K=0

NON —ADIABATIC, K= 0.8,To=20'C

J— 1 1
00 0.2 04 0.6 0.8 10
A = a/A

FiG. 11. Plot of T, and T, along the length of a parallel-flow
heat exchanger.

values given in Table 3 and the results for counter-
flow as well as parallel-flow are presented for
T, = 20°C along with those for adiabatic conditions
(K=0or U,=0) in Figs. 10 and 11, and Table 4.
The exit temperatures T, and T, of the fluids, the
effectiveness ¢ = 0, as well as the values of @,, @, and
Q, obtained by the present method are indicated.
Verification of the heat balance equation (36) is also
shown in Table 4. The exit temperatures T, and T,,,
and effectiveness, ¢, are found to be in exact agreement
with those obtained by the N7U method and provides

Parallel-flow
U,=0
T,=20°C  Adiabatic

Counter-flow
U,=0
T,=20°C Adiabatic

mc,t 1000.0 1000.0 1000.0 1000.0

mc,t 2000.0 2000.0 2000.0 2000.0

U, 25.0 250 25.0 25.0

U, 10.0 0 10.0 0

A, 0.1n 0.1z 0.1n 0.ln

A, 0.2n 0.2n 0.2n 0.2n

Ty 10.0 10.0 10.0 10.0

Ty 100.0 100.0 100.0 100.0

T, 20.0 20.0 20.0 20.0

Present method

N 0.471 0.471 0.471 0.471

C 0.500 0.500 0.500 0.500

K 0.800 0 0.800 0

6, 0.111 0.111 0.111 0.111

6.=c¢ 0.322 0.347¢ 0.311 0.338%

05, 0.700 0.827 0.708 0.831

T 39.005 41.230% 37.947 40.409%

T, 73.032 84.385% 73.701 84.796%

Q. 415.524 0 410.838 0

0, 483.416 520.494 465.782 506.809

Q, —898.940 —520.494 —876.620 —506.809

2

%Qn 0 0 0 0

NTU method

Entn — 0.347 — 0.338

T, — 41.230 — 40.409
26 — 84.385 — 84.796
tInJmin~ 'K,

1 Exact agreement with NTU method.

further validation of the present analysis. Results
obtained by the generalized solution (Table 4) for
non-adiabatic as well as adiabatic conditions are
found to be in exact agreement with those obtained
by the analytical method {3].

CONCLUSIONS

Generalized analytical solutions for the steady-state
temperature of the heat exchanging fluids along the
length of a counter-flow as well as a parallel-flow
concentric tube heat exchanger are presented in terms
of dimensionless parameters. These solutions are
obtained, in general, for non-adiabatic conditions at
the outer surface of such heat exchangers. However,
if adiabatic conditions are assumed at the outside
surface of the heat exchanger, these solutions are
identical to those obtained by the NTU method. The
present analysis also permits the determination of
the heat exchanger effectiveness, as defined by the
NTU method, from the dimensionless exit tem-
peratures of the heat exchanging fluids. Expressions
for heat transferred to the outside are also obtained.
A case study is presented showing the heat balance
for a heat exchanger for the non-adiabatic case as
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SOLUTION GENERALE ET EFFICACITE DES ECHANGEURS DE CHALEUR A TUBES
CONCENTRIQUES

Résumé—On obtient des solutions générales pour la température stationnaire des fluides échangeant de la
chaleur, tout le long d’un échangeur a tubes concentriques. On obtient aussi 'efficacité de I'échangeur en
fonction de la température adimensionnelle de sortie. On résout analytiquement les équations aux dérivées
partielles adimensionnelles pour les écoulements intérieur et externe, pour des conditions non adiabatiques
a la surface extérieure du tube interne. On considére les cas de contre-courant et de co-courant. Sont
obtenues des expressions pour le transfert thermique. Un accord exact avec la méthode NTU pour les
conditions adiabatiques & la surface extérieure et aussi avec 'analyse du bilan thermique fournit la
validation de la solution générale.

VERALLGEMEINERTES BERECHNUNGSVERFAHREN FUR
DOPPELROHR-WARMETAUSCHER

Zusammenfassung—In dieser Arbeit wird der stationdre Verlauf der Fluidtemperaturen entlang eines
Doppelrohr-Wirmetauschers berechnet. AuBerdem ergibt sich der Wirmetauscher-Wirkungsgrad als
dimensionslose Austrittstemperatur. Fiir die inneren und dufleren Fluidstrdme werden die Bilanzgleichungen
in differentieller dimensionsloser Form angegeben und analytisch gelSst, hierbei wird ein Wirmeaustausch
mit der Umgebung zugelassen und sowohl Gleich- als auch Gegenstrom betrachtet. Fiir den Wirme-
transport zur oder von der Umgebung werden Gleichungen angegeben. Das Ergebnis zeigt eine exakte
Ubereinstimmung mit der NTU-Methode fiir adiabate Bedingungen an der duBeren Oberfliche, ebensc
bestitigt die Warmebilanz die Gultigkeit der allgemeinen Losung.

OBOBIMEHHOE PEMEHHUE U 9®®EKTHUBHOCTH IS KOHIIEHTPUUECKUX
TPYBYATBIX TEINJIOOBMEHHHUKOB

AnnoTamus—ITo/ydeHb! pacnipefe/icHns Ui CTAMOHAPHON TeMNEpaTyphbl XHAKOCTEH MO [UIHHE KOH-
HEHTPHYECKOro TpybuaToro TerwoobmeHHuka. D¢hdeKTHBHOCTh BHIBOAMTCA 4epe3 Ge3pasMepHYHO TeM-
nepaTypy Ha Bxoje. AHAJATHYECKH PEINAIOTCS ONpeAeiAIoline ypasHeHHs B Ge3paMepHoil hopme 1
BHYTPEHHETO H BHEIIHETO MOTOKOB JXMAKOCTH NMpPH HeaxnabaTHYECKHX YCJIOBHAX Ha HAPYXHOH MOBEpX-
HOCTH BHemHeit Tpy6bl. PaccMaTpHBaloTCa ClIyYad MPOTHBOTOKA H NPAMOTOKA. [TosyueHbl BhIpaXeHHs
JUIS TEILIONEpEHOCa BHYTPb M Hapyky. TOYHOE COOTBETCTBHE C NAHHBIMH, NOJYYEHHBIMH METOIOM
KOJIMYeCTBA €IMHMII NIEPEHOCA IS aHabaTHIeCKNX YCIOBHI Ha BHEWIHEH MOBEPXHOCTH, a TAKXKE AHAIH3
TEMIOBOro Hananca 06OCHOBLIBAIOT MPaBOMEPHOCTh OGOGILEHHOTO pELIECHHS.



